

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/todolist/checkouts/latest/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/todolist/checkouts/latest/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

Index

Todolist

[image:] [https://goreportcard.com/report/github.com/gammons/todolist]
[image: Build Status] [https://travis-ci.org/gammons/todolist]

Todolist is a simple and very fast task manager for the command line. It is based on the Getting Things Done [http://lifehacker.com/productivity-101-a-primer-to-the-getting-things-done-1551880955] methodology.

Documentation

See The main Todolist website [http://todolist.site] for the current documentation.

The frontend webapp

The frontend is an open source React/Redux based app that is hosted at https://github.com/gammons/todolist_frontend.

Is it good?

Yes. Yes it is.

Author

Please send complaints, complements, rants, etc to Grant Ammons [https://twitter.com/gammons]

License

Todolist is open source, and uses the MIT license [https://github.com/gammons/todolist/blob/master/LICENSE.md].

 The MIT License

Copyright (c) 2016 Grant Ammons

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the “Software”), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in
all copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
THE SOFTWARE.

go-isatty

isatty for golang

Usage

package main

import (
 "fmt"
 "github.com/mattn/go-isatty"
 "os"
)

func main() {
 if isatty.IsTerminal(os.Stdout.Fd()) {
 fmt.Println("Is Terminal")
 } else {
 fmt.Println("Is Not Terminal")
 }
}

Installation

$ go get github.com/mattn/go-isatty

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

go-colorable

Colorable writer for windows.

For example, most of logger packages doesn’t show colors on windows. (I know we can do it with ansicon. But I don’t want.)
This package is possible to handle escape sequence for ansi color on windows.

Too Bad!

[image:]

So Good!

[image:]

Usage

logrus.SetFormatter(&logrus.TextFormatter{ForceColors: true})
logrus.SetOutput(colorable.NewColorableStdout())

logrus.Info("succeeded")
logrus.Warn("not correct")
logrus.Error("something error")
logrus.Fatal("panic")

You can compile above code on non-windows OSs.

Installation

$ go get github.com/mattn/go-colorable

License

MIT

Author

Yasuhiro Matsumoto (a.k.a mattn)

Color [image: GoDoc] [http://godoc.org/github.com/fatih/color] [image: Build Status] [https://travis-ci.org/fatih/color]

Color lets you use colorized outputs in terms of ANSI Escape
Codes [http://en.wikipedia.org/wiki/ANSI_escape_code#Colors] in Go (Golang). It
has support for Windows too! The API can be used in several ways, pick one that
suits you.

[image: Color]

Install

go get github.com/fatih/color

Examples

Standard colors

// Print with default helper functions
color.Cyan("Prints text in cyan.")

// A newline will be appended automatically
color.Blue("Prints %s in blue.", "text")

// These are using the default foreground colors
color.Red("We have red")
color.Magenta("And many others ..")

Mix and reuse colors

// Create a new color object
c := color.New(color.FgCyan).Add(color.Underline)
c.Println("Prints cyan text with an underline.")

// Or just add them to New()
d := color.New(color.FgCyan, color.Bold)
d.Printf("This prints bold cyan %s\n", "too!.")

// Mix up foreground and background colors, create new mixes!
red := color.New(color.FgRed)

boldRed := red.Add(color.Bold)
boldRed.Println("This will print text in bold red.")

whiteBackground := red.Add(color.BgWhite)
whiteBackground.Println("Red text with white background.")

Custom print functions (PrintFunc)

// Create a custom print function for convenience
red := color.New(color.FgRed).PrintfFunc()
red("Warning")
red("Error: %s", err)

// Mix up multiple attributes
notice := color.New(color.Bold, color.FgGreen).PrintlnFunc()
notice("Don't forget this...")

Insert into noncolor strings (SprintFunc)

// Create SprintXxx functions to mix strings with other non-colorized strings:
yellow := color.New(color.FgYellow).SprintFunc()
red := color.New(color.FgRed).SprintFunc()
fmt.Printf("This is a %s and this is %s.\n", yellow("warning"), red("error"))

info := color.New(color.FgWhite, color.BgGreen).SprintFunc()
fmt.Printf("This %s rocks!\n", info("package"))

// Use helper functions
fmt.Printf("This", color.RedString("warning"), "should be not neglected.")
fmt.Printf(color.GreenString("Info:"), "an important message.")

// Windows supported too! Just don't forget to change the output to color.Output
fmt.Fprintf(color.Output, "Windows support: %s", color.GreenString("PASS"))

Plug into existing code

// Use handy standard colors
color.Set(color.FgYellow)

fmt.Println("Existing text will now be in yellow")
fmt.Printf("This one %s\n", "too")

color.Unset() // Don't forget to unset

// You can mix up parameters
color.Set(color.FgMagenta, color.Bold)
defer color.Unset() // Use it in your function

fmt.Println("All text will now be bold magenta.")

Disable color

There might be a case where you want to disable color output (for example to
pipe the standard output of your app to somewhere else). Color has support to
disable colors both globally and for single color definition. For example
suppose you have a CLI app and a --no-color bool flag. You can easily disable
the color output with:

var flagNoColor = flag.Bool("no-color", false, "Disable color output")

if *flagNoColor {
 color.NoColor = true // disables colorized output
}

It also has support for single color definitions (local). You can
disable/enable color output on the fly:

c := color.New(color.FgCyan)
c.Println("Prints cyan text")

c.DisableColor()
c.Println("This is printed without any color")

c.EnableColor()
c.Println("This prints again cyan...")

Todo

	Save/Return previous values

	Evaluate fmt.Formatter interface

Credits

	Fatih Arslan [https://github.com/fatih]

	Windows support via @mattn: colorable [https://github.com/mattn/go-colorable]

License

The MIT License (MIT) - see LICENSE.md [https://github.com/fatih/color/blob/master/LICENSE.md] for more details

 The MIT License (MIT)

Copyright (c) 2013 Fatih Arslan

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the “Software”), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED “AS IS”, WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

HttpRouter [image: Build Status] [https://travis-ci.org/julienschmidt/httprouter] [image: Coverage] [http://gocover.io/github.com/julienschmidt/httprouter] [image: GoDoc] [http://godoc.org/github.com/julienschmidt/httprouter]

HttpRouter is a lightweight high performance HTTP request router
(also called multiplexer or just mux for short) for Go [http://golang.org/].

In contrast to the default mux [http://golang.org/pkg/net/http/#ServeMux] of Go’s net/http package, this router supports
variables in the routing pattern and matches against the request method.
It also scales better.

The router is optimized for high performance and a small memory footprint.
It scales well even with very long paths and a large number of routes.
A compressing dynamic trie (radix tree) structure is used for efficient matching.

Features

Only explicit matches: With other routers, like http.ServeMux [http://golang.org/pkg/net/http/#ServeMux],
a requested URL path could match multiple patterns. Therefore they have some
awkward pattern priority rules, like longest match or first registered,
first matched. By design of this router, a request can only match exactly one
or no route. As a result, there are also no unintended matches, which makes it
great for SEO and improves the user experience.

Stop caring about trailing slashes: Choose the URL style you like, the
router automatically redirects the client if a trailing slash is missing or if
there is one extra. Of course it only does so, if the new path has a handler.
If you don’t like it, you can turn off this behavior [http://godoc.org/github.com/julienschmidt/httprouter#Router.RedirectTrailingSlash].

Path auto-correction: Besides detecting the missing or additional trailing
slash at no extra cost, the router can also fix wrong cases and remove
superfluous path elements (like ../ or //).
Is CAPTAIN CAPS LOCK [http://www.urbandictionary.com/define.php?term=Captain+Caps+Lock] one of your users?
HttpRouter can help him by making a case-insensitive look-up and redirecting him
to the correct URL.

Parameters in your routing pattern: Stop parsing the requested URL path,
just give the path segment a name and the router delivers the dynamic value to
you. Because of the design of the router, path parameters are very cheap.

Zero Garbage: The matching and dispatching process generates zero bytes of
garbage. In fact, the only heap allocations that are made, is by building the
slice of the key-value pairs for path parameters. If the request path contains
no parameters, not a single heap allocation is necessary.

Best Performance: Benchmarks speak for themselves [https://github.com/julienschmidt/go-http-routing-benchmark].
See below for technical details of the implementation.

No more server crashes: You can set a Panic handler [http://godoc.org/github.com/julienschmidt/httprouter#Router.PanicHandler] to deal with panics
occurring during handling a HTTP request. The router then recovers and lets the
PanicHandler log what happened and deliver a nice error page.

Of course you can also set custom NotFound [http://godoc.org/github.com/julienschmidt/httprouter#Router.NotFound] and MethodNotAllowed [http://godoc.org/github.com/julienschmidt/httprouter#Router.MethodNotAllowed] handlers and serve static files [http://godoc.org/github.com/julienschmidt/httprouter#Router.ServeFiles].

Usage

This is just a quick introduction, view the GoDoc [http://godoc.org/github.com/julienschmidt/httprouter] for details.

Let’s start with a trivial example:

package main

import (
 "fmt"
 "github.com/julienschmidt/httprouter"
 "net/http"
 "log"
)

func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
 fmt.Fprint(w, "Welcome!\n")
}

func Hello(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {
 fmt.Fprintf(w, "hello, %s!\n", ps.ByName("name"))
}

func main() {
 router := httprouter.New()
 router.GET("/", Index)
 router.GET("/hello/:name", Hello)

 log.Fatal(http.ListenAndServe(":8080", router))
}

Named parameters

As you can see, :name is a named parameter.
The values are accessible via httprouter.Params, which is just a slice of httprouter.Params.
You can get the value of a parameter either by its index in the slice, or by using the ByName(name) method:
:name can be retrived by ByName("name").

Named parameters only match a single path segment:

Pattern: /user/:user

 /user/gordon match
 /user/you match
 /user/gordon/profile no match
 /user/ no match

Note: Since this router has only explicit matches, you can not register static routes and parameters for the same path segment. For example you can not register the patterns /user/new and /user/:user for the same request method at the same time. The routing of different request methods is independent from each other.

Catch-All parameters

The second type are catch-all parameters and have the form *name.
Like the name suggests, they match everything.
Therefore they must always be at the end of the pattern:

Pattern: /src/*filepath

 /src/ match
 /src/somefile.go match
 /src/subdir/somefile.go match

How does it work?

The router relies on a tree structure which makes heavy use of common prefixes,
it is basically a compact prefix tree [http://en.wikipedia.org/wiki/Trie]
(or just Radix tree [http://en.wikipedia.org/wiki/Radix_tree]).
Nodes with a common prefix also share a common parent. Here is a short example
what the routing tree for the GET request method could look like:

Priority Path Handle
9 \ *<1>
3 ├s nil
2 |├earch\ *<2>
1 |└upport\ *<3>
2 ├blog\ *<4>
1 | └:post nil
1 | └\ *<5>
2 ├about-us\ *<6>
1 | └team\ *<7>
1 └contact\ *<8>

Every *<num> represents the memory address of a handler function (a pointer).
If you follow a path trough the tree from the root to the leaf, you get the
complete route path, e.g \blog\:post\, where :post is just a placeholder
(parameter) for an actual post name. Unlike hash-maps, a
tree structure also allows us to use dynamic parts like the :post parameter,
since we actually match against the routing patterns instead of just comparing
hashes. As benchmarks show [https://github.com/julienschmidt/go-http-routing-benchmark],
this works very well and efficient.

Since URL paths have a hierarchical structure and make use only of a limited set
of characters (byte values), it is very likely that there are a lot of common
prefixes. This allows us to easily reduce the routing into ever smaller problems.
Moreover the router manages a separate tree for every request method.
For one thing it is more space efficient than holding a method->handle map in
every single node, for another thing is also allows us to greatly reduce the
routing problem before even starting the look-up in the prefix-tree.

For even better scalability, the child nodes on each tree level are ordered by
priority, where the priority is just the number of handles registered in sub
nodes (children, grandchildren, and so on..).
This helps in two ways:

	Nodes which are part of the most routing paths are evaluated first. This
helps to make as much routes as possible to be reachable as fast as possible.

	It is some sort of cost compensation. The longest reachable path (highest
cost) can always be evaluated first. The following scheme visualizes the tree
structure. Nodes are evaluated from top to bottom and from left to right.

├------------
├---------
├-----
├----
├--
├--
└-

Why doesn’t this work with http.Handler?

It does! The router itself implements the http.Handler interface.
Moreover the router provides convenient adapters for http.Handler [http://godoc.org/github.com/julienschmidt/httprouter#Router.Handler]s and http.HandlerFunc [http://godoc.org/github.com/julienschmidt/httprouter#Router.HandlerFunc]s
which allows them to be used as a httprouter.Handle [http://godoc.org/github.com/julienschmidt/httprouter#Router.Handle] when registering a route.
The only disadvantage is, that no parameter values can be retrieved when a
http.Handler or http.HandlerFunc is used, since there is no efficient way to
pass the values with the existing function parameters.
Therefore httprouter.Handle [http://godoc.org/github.com/julienschmidt/httprouter#Router.Handle] has a third function parameter.

Just try it out for yourself, the usage of HttpRouter is very straightforward. The package is compact and minimalistic, but also probably one of the easiest routers to set up.

Where can I find Middleware X?

This package just provides a very efficient request router with a few extra
features. The router is just a http.Handler [http://golang.org/pkg/net/http/#Handler],
you can chain any http.Handler compatible middleware before the router,
for example the Gorilla handlers [http://www.gorillatoolkit.org/pkg/handlers].
Or you could just write your own [http://justinas.org/writing-http-middleware-in-go/],
it’s very easy!

Alternatively, you could try a web framework based on HttpRouter.

Multi-domain / Sub-domains

Here is a quick example: Does your server serve multiple domains / hosts?
You want to use sub-domains?
Define a router per host!

// We need an object that implements the http.Handler interface.
// Therefore we need a type for which we implement the ServeHTTP method.
// We just use a map here, in which we map host names (with port) to http.Handlers
type HostSwitch map[string]http.Handler

// Implement the ServerHTTP method on our new type
func (hs HostSwitch) ServeHTTP(w http.ResponseWriter, r *http.Request) {
 // Check if a http.Handler is registered for the given host.
 // If yes, use it to handle the request.
 if handler := hs[r.Host]; handler != nil {
 handler.ServeHTTP(w, r)
 } else {
 // Handle host names for wich no handler is registered
 http.Error(w, "Forbidden", 403) // Or Redirect?
 }
}

func main() {
 // Initialize a router as usual
 router := httprouter.New()
 router.GET("/", Index)
 router.GET("/hello/:name", Hello)

 // Make a new HostSwitch and insert the router (our http handler)
 // for example.com and port 12345
 hs := make(HostSwitch)
 hs["example.com:12345"] = router

 // Use the HostSwitch to listen and serve on port 12345
 log.Fatal(http.ListenAndServe(":12345", hs))
}

Basic Authentication

Another quick example: Basic Authentification (RFC 2617) for handles:

package main

import (
 "bytes"
 "encoding/base64"
 "fmt"
 "github.com/julienschmidt/httprouter"
 "net/http"
 "log"
 "strings"
)

func BasicAuth(h httprouter.Handle, user, pass []byte) httprouter.Handle {
 return func(w http.ResponseWriter, r *http.Request, ps httprouter.Params) {
 const basicAuthPrefix string = "Basic "

 // Get the Basic Authentication credentials
 auth := r.Header.Get("Authorization")
 if strings.HasPrefix(auth, basicAuthPrefix) {
 // Check credentials
 payload, err := base64.StdEncoding.DecodeString(auth[len(basicAuthPrefix):])
 if err == nil {
 pair := bytes.SplitN(payload, []byte(":"), 2)
 if len(pair) == 2 &&
 bytes.Equal(pair[0], user) &&
 bytes.Equal(pair[1], pass) {

 // Delegate request to the given handle
 h(w, r, ps)
 return
 }
 }
 }

 // Request Basic Authentication otherwise
 w.Header().Set("WWW-Authenticate", "Basic realm=Restricted")
 http.Error(w, http.StatusText(http.StatusUnauthorized), http.StatusUnauthorized)
 }
}

func Index(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
 fmt.Fprint(w, "Not protected!\n")
}

func Protected(w http.ResponseWriter, r *http.Request, _ httprouter.Params) {
 fmt.Fprint(w, "Protected!\n")
}

func main() {
 user := []byte("gordon")
 pass := []byte("secret!")

 router := httprouter.New()
 router.GET("/", Index)
 router.GET("/protected/", BasicAuth(Protected, user, pass))

 log.Fatal(http.ListenAndServe(":8080", router))
}

Chaining with the NotFound handler

NOTE: It might be required to set Router.HandleMethodNotAllowed [http://godoc.org/github.com/julienschmidt/httprouter#Router.HandleMethodNotAllowed] to false to avoid problems.

You can use another http.Handler [http://golang.org/pkg/net/http/#Handler], for example another router, to handle requests which could not be matched by this router by using the Router.NotFound [http://godoc.org/github.com/julienschmidt/httprouter#Router.NotFound] handler. This allows chaining.

Static files

The NotFound handler can for example be used to serve static files from the root path / (like an index.html file along with other assets):

// Serve static files from the ./public directory
router.NotFound = http.FileServer(http.Dir("public")).ServeHTTP

But this approach sidesteps the strict core rules of this router to avoid routing problems. A cleaner approach is to use a distinct sub-path for serving files, like /static/*filepath or /files/*filepath.

Web Frameworks based on HttpRouter

If the HttpRouter is a bit too minimalistic for you, you might try one of the following more high-level 3rd-party web frameworks building upon the HttpRouter package:

	Ace [https://github.com/plimble/ace]: Blazing fast Go Web Framework

	api2go [https://github.com/univedo/api2go]: A JSON API Implementation for Go

	Gin [https://github.com/gin-gonic/gin]: Features a martini-like API with much better performance

	Goat [https://github.com/bahlo/goat]: A minimalistic REST API server in Go

	Hikaru [https://github.com/najeira/hikaru]: Supports standalone and Google AppEngine

	Hitch [https://github.com/nbio/hitch]: Hitch ties httprouter, httpcontext [https://github.com/nbio/httpcontext], and middleware up in a bow

	kami [https://github.com/guregu/kami]: A tiny web framework using x/net/context

	Medeina [https://github.com/imdario/medeina]: Inspired by Ruby’s Roda and Cuba

	Neko [https://github.com/rocwong/neko]: A lightweight web application framework for Golang

	Roxanna [https://github.com/iamthemuffinman/Roxanna]: An amalgamation of httprouter, better logging, and hot reload

	siesta [https://github.com/VividCortex/siesta]: Composable HTTP handlers with contexts

 _static/minus.png

_static/comment-close.png

_static/comment-bright.png

_static/file.png

_static/plus.png

_static/comment.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

nav.xhtml

 Table of Contents

 		Welcome to Read the Docs

_static/up.png

_static/up-pressed.png

